粉体技术可以指粉状物质的加工处理思路软件和相关设备硬件的总成。自从人类社会的发端开始,粉体技术就与每个人息息相关,一刻也没有离开过,只不过是每个人是否明确清晰地感觉到和识别出来而已。粉体技术作为一门综合性技术,就是随着人类文明的发展而逐渐形成的。从原始人学会制造石器粉碎食物开始,就出现了粉碎技术的雏形。通过对粉体技术的感知、认知的变化,我们可以从加工业的发展特点来形容粉体技术过程--「构思颗粒、分析构成、加工粉体、制造产品、现实设想」。
从石器时代到铁器时代,粉体技术扮演着重要的角色,而系统整理这一系列技术的还是我国古代的《天工开物》一书,是它归纳分析形成粉体技术的雏形。西方工业革命对钢铁需求的快速增加,大规模地加工矿物粉体的相关工业已得到迅速地发展。针对粉体企业生产中出现的种种故障与危害,在物理和化学等学科不断进步的推动下,20世纪50年代对粉体过程现象与粉体技术理论的研究应运而生。20世纪60年代理论研究与生产应用的结合与发展,确立了粉体工程学科的作用与重要性。20世纪70年代为解决粉体相关产业存在的问题以及对新产品的研发,奠定了现代粉体技术的基础。
随着粉体技术的不断提高与积累以及微颗粒、超微颗粒材料制备与应用技术的发展,20世纪80年代粉体技术实现了超细化,相关理论也逐渐系统化;由于微颗粒、超微颗粒的行为与颗粒的行为差异较大,从而微颗粒、超微颗粒成为粉体科学重要的研究对象。20世纪90年代显微测试技术和计算机技术的飞速发展,促进了纳米粉体技术的诞生,纳米材料制备与应用技术又赋予粉体工程新的挑战和用武领域。21世纪颗粒微细化以及颗粒功能化与复合化的发展,为粉体技术在材料科学与工程领域的应用中开辟了新天地[5]:例如便于服用和可控溶解的缓释药物、延展性好不易脱落的化妆品、高生物利用度的超微粉体食品、高精度抛光的研磨粉、高纯材料制备的电子元件和各类能源材料,为高性能粉体的使用开拓了广阔的市场。
以粉体制备为例,古老的粉碎方式被粉碎(break-down)装备替代,已经工业化的超细搅拌磨突破了制备微粉的"3μm"粉碎极限,实现了亚微米级超微粉碎。精细化是一个突出特色,英语中"Fineparticlemustbefine"这句双关语的确说明了微细化与精细化的关系;超微颗粒的研究开发就是沿着这个方向发展的。以多尺度思想认识物质的结构,科技界已经将可操控的微颗粒尺度经历了从微米到纳米之后,正在向分子量级逼近;宏观世界和微观世界的界限逐渐模糊化。
随着材料及相关产业的科技进步,作为工业原料精细化加工处理的粉体技术应用范围也在不断地拓展,单纯的超细粉碎分级技术已经不能满足对终端制品性能的要求。人们不仅要求粉体原料具有微纳米级的超细粒度和理想的粒度分布,为了材料性能或粉体使用性能的提高,对粉体颗粒的成分、结构、形貌等也提出了日益严苛的要求。